Zhenning Liu, Dhruv Devulapalli, Dominik Hangleiter, Yi-Kai Liu, Alicia J. Kollár, Alexey V. Gorshkov, Andrew M. Childs (Mar 14 2024).
Abstract: Existing schemes for demonstrating quantum computational advantage are subject to various practical restrictions, including the hardness of verification and challenges in experimental implementation. Meanwhile, analog quantum simulators have been realized in many experiments to study novel physics. In this work, we propose a quantum advantage protocol based on single-step Feynman-Kitaev verification of an analog quantum simulation, in which the verifier need only run an $O(\lambda^2)$-time classical computation, and the prover need only prepare $O(1)$ samples of a history state and perform $O(\lambda^2)$ single-qubit measurements, for a security parameter $\lambda$. We also propose a near-term feasible strategy for honest provers and discuss potential experimental realizations.