1. 1

Mingrui Jing, Chengkai Zhu, Xin Wang (Apr 05 2024).

Abstract: Circuit knitting, a method for connecting quantum circuits across multiple processors to simulate nonlocal quantum operations, is a promising approach for distributed quantum computing. While various techniques have been developed for circuit knitting, we uncover fundamental limitations to the scalability of this technology. We prove that the sampling overhead of circuit knitting is exponentially lower bounded by the exact entanglement cost of the target bipartite dynamic, even for asymptotic overhead in the parallel cut regime. Specifically, we prove that the regularized sampling overhead assisted with local operations and classical communication (LOCC), of any bipartite quantum channel is lower bounded by the exponential of its exact entanglement cost under separable preserving operations. Furthermore, we show that the regularized sampling overhead for simulating a general bipartite channel via LOCC is lower bounded by $\kappa$-entanglement and max-Rains information, providing efficiently computable benchmarks. Our work reveals a profound connection between virtual quantum information processing via quasi-probability decomposition and quantum Shannon theory, highlighting the critical role of entanglement in distributed quantum computing.

Arxiv: https://arxiv.org/abs/2404.03619