Sabee Grewal, Vishnu Iyer, William Kretschmer, Daniel Liang (Apr 02 2024).
Abstract: We show that any pseudoentangled state ensemble with a gap of $t$ bits of entropy requires $\Omega(t)$ non-Clifford gates to prepare. This bound is tight up to polylogarithmic factors if linear-time quantum-secure pseudorandom functions exist. Our result follows from a polynomial-time algorithm to estimate the entanglement entropy of a quantum state across any cut of qubits. When run on an $n$-qubit state that is stabilized by at least $2^{n-t}$ Pauli operators, our algorithm produces an estimate that is within an additive factor of $\frac{t}{2}$ bits of the true entanglement entropy.