Andi Gu, Salvatore F. E. Oliviero, Lorenzo Leone (Mar 25 2024).
Abstract: This work uncovers a fundamental connection between doped stabilizer states, a concept from quantum information theory, and the structure of eigenstates in perturbed many-body quantum systems. We prove that for Hamiltonians consisting of a sum of commuting Pauli operators (i.e., stabilizer Hamiltonians) and a perturbation composed of a limited number of arbitrary Pauli terms, the eigenstates can be represented as doped stabilizer states with small stabilizer nullity. This result enables the application of stabilizer techniques to a broad class of many-body systems, even in highly entangled regimes. Building on this, we develop efficient classical algorithms for tasks such as finding low-energy eigenstates, simulating quench dynamics, preparing Gibbs states, and computing entanglement entropies in these systems. Our work opens up new possibilities for understanding the robustness of topological order and the dynamics of many-body systems under perturbations, paving the way for novel insights into the interplay of quantum information, entanglement, and many-body systems.