1. 1

Koen Alexander, Andrea Bahgat, Avishai Benyamini, Dylan Black, Damien Bonneau, Stanley Burgos, Ben Burridge, Geoff Campbell, Gabriel Catalano, Alex Ceballos, Chia-Ming Chang, CJ Chung, Fariba Danesh, Tom Dauer, Michael Davis, Eric Dudley, Ping Er-Xuan, Josep Fargas, Alessandro Farsi, Colleen Fenrich, et al (75) (Apr 29 2024).

Abstract: Whilst holding great promise for low noise, ease of operation and networking, useful photonic quantum computing has been precluded by the need for beyond-state-of-the-art components, manufactured by the millions. Here we introduce a manufacturable platform for quantum computing with photons. We benchmark a set of monolithically-integrated silicon photonics-based modules to generate, manipulate, network, and detect photonic qubits, demonstrating dual-rail photonic qubits with $99.98% \pm 0.01%$ state preparation and measurement fidelity, Hong-Ou-Mandel quantum interference between independent photon sources with $99.50%\pm0.25%$ visibility, two-qubit fusion with $99.22%\pm0.12%$ fidelity, and a chip-to-chip qubit interconnect with $99.72%\pm0.04%$ fidelity, not accounting for loss. In addition, we preview a selection of next generation technologies, demonstrating low-loss silicon nitride waveguides and components, fabrication-tolerant photon sources, high-efficiency photon-number-resolving detectors, low-loss chip-to-fiber coupling, and barium titanate electro-optic phase shifters.

Arxiv: https://arxiv.org/abs/2404.17570