1. 1

Lionel J. Dmello, Laurens T. Ligthart, David Gross (May 24 2024).

Abstract: While there exist theories that have states “more strongly entangled” than quantum theory, in the sense that they show CHSH values above Tsirelson’s bound, all known examples of such theories have a strictly smaller set of measurements. Therefore, in tasks which require both bipartite states and measurements, they do not perform better than QM. One of the simplest information processing tasks involving both bipartite states and measurements is that of entanglement swapping. In this paper, we study entanglement swapping in generalised probabilistic theories (GPTs). In particular, we introduce the iterated CHSH game, which measures the power of a GPT to preserve non-classical correlations, in terms of the largest CHSH value obtainable after $n$ rounds of entanglement swapping. Our main result is the construction of a GPT that achieves a CHSH value of $4$ after an arbitrary number of rounds. This addresses a question about the optimality of quantum theory for such games recently raised in the literature. One challenge faced when treating this problem is that there seems to be no general framework for constructing GPTs in which entanglement swapping is a well-defined operation. Therefore, we introduce an algorithmic construction that turns a bipartite GPT into a multipartite GPT that supports entanglement swapping, if consistently possible.

Arxiv: https://arxiv.org/abs/2405.13819