1. 1

Zhenhuan Liu, Xingjian Zhang, Yue-Yang Fei, Zhenyu Cai (Feb 13 2024).

Abstract: Quantum error mitigation is a key approach for extracting target state properties on state-of-the-art noisy machines and early fault-tolerant devices. Using the ideas from flag fault tolerance and virtual state purification, we develop the virtual channel purification (VCP) protocol, which consumes similar qubit and gate resources as virtual state purification but offers up to exponentially stronger error suppression with increased system size and more noisy operation copies. Furthermore, VCP removes most of the assumptions required in virtual state purification. Essentially, VCP is the first quantum error mitigation protocol that does not require specific knowledge about the noise models, the target quantum state, and the target problem while still offering rigorous performance guarantees for practical noise regimes. Further connections are made between VCP and quantum error correction to produce one of the first protocols that combine quantum error correction and quantum error mitigation beyond concatenation. We can remove all noise in the channel while paying only the same sampling cost as low-order purification, reaching beyond the standard bias-variance trade-off in quantum error mitigation. Our protocol can also be adapted to key tasks in quantum networks like channel capacity activation and entanglement distribution.

Arxiv: https://arxiv.org/abs/2402.07866

  1.