1. 1

Gregory Quiroz, Bibek Pokharel, Joseph Boen, Lina Tewala, Vinay Tripathi, Devon Williams, Lian-Ao Wu, Paraj Titum, Kevin Schultz, Daniel Lidar (Feb 13 2024).

Abstract: Decoherence-free subspaces and subsystems (DFS) preserve quantum information by encoding it into symmetry-protected states unaffected by decoherence. An inherent DFS of a given experimental system may not exist; however, through the use of dynamical decoupling (DD), one can induce symmetries that support DFSs. Here, we provide the first experimental demonstration of DD-generated DFS logical qubits. Utilizing IBM Quantum superconducting processors, we investigate two and three-qubit DFS codes comprising up to six and seven noninteracting logical qubits, respectively. Through a combination of DD and error detection, we show that DFS logical qubits can achieve up to a 23% improvement in state preservation fidelity over physical qubits subject to DD alone. This constitutes a beyond-breakeven fidelity improvement for DFS-encoded qubits. Our results showcase the potential utility of DFS codes as a pathway toward enhanced computational accuracy via logical encoding on quantum processors.

Arxiv: https://arxiv.org/abs/2402.07278