Chelsea A. Williams, Antonio A. Gentile, Vincent E. Elfving, Daniel Berger, Oleksandr Kyriienko (Apr 15 2024).
Abstract: We propose quantum methods for solving differential equations that are based on a gradual improvement of the solution via an iterative process, and are targeted at applications in fluid dynamics. First, we implement the Jacobi iteration on a quantum register that utilizes a linear combination of unitaries (LCU) approach to store the trajectory information. Second, we extend quantum methods to Gauss-Seidel iterative methods. Additionally, we propose a quantum-suitable resolvent decomposition based on the Woodbury identity. From a technical perspective, we develop and utilize tools for the block encoding of specific matrices as well as their multiplication. We benchmark the approach on paradigmatic fluid dynamics problems. Our results stress that instead of inverting large matrices, one can program quantum computers to perform multigrid-type computations and leverage corresponding advances in scientific computing.