1. 1

Ying Li (Mar 18 2024).

Abstract: In fault-tolerant quantum computing, quantum algorithms are implemented through quantum circuits capable of error correction. These circuits are typically constructed based on specific quantum error correction codes, with consideration given to the characteristics of the underlying physical platforms. Optimising these circuits within the constraints of today’s quantum computing technologies, particularly in terms of error rates, qubit counts, and network topologies, holds substantial implications for the feasibility of quantum applications in the near future. This paper presents a toolkit for designing and analysing fault-tolerant quantum circuits. We introduce a framework for representing stabiliser circuits using classical low-density parity-check (LDPC) codes. Each codeword in the representation corresponds to a quantum-mechanical equation regarding the circuit, formalising the correlations utilised in parity checks and delineating logical operations within the circuit. Consequently, the LDPC code provides a means of quantifying fault tolerance and verifying logical operations. We outline the procedure for generating LDPC codes from circuits using the Tanner graph notation, alongside proposing graph-theory tools for constructing fault-tolerant quantum circuits from classical LDPC codes. These findings offer a systematic approach to applying classical error correction techniques in optimising existing fault-tolerant protocols and developing new ones.

Arxiv: https://arxiv.org/abs/2403.10268